Link to Source: https://doi.org/10.1016/j.jacadv.2025.102168
Authors: Daijiro Tomii, Isaac Shiri, Giovanni Baj, Masaaki Nakase, Pooya Mohammadi Kazaj, Daryoush Samim, Joanna Bartkowiak, Fabien Praz, Jonas Lanz, Stefan Stortecky, David Reineke, Stephan Windecker, Thomas Pilgrim, Christoph Gräni Giannopoulos, George C. M. Siontis, Ronny R. Buechel, Christoph Gräni
Summary: Researchers developed a multimodal machine learning model integrating 184 clinical, anatomical, and imaging parameters to predict technical failures in transcatheter aortic valve replacement procedures, enabling better patient selection and procedural planning.