Link to Source: https://www.jacc.org/doi/10.1016/j.jcin.2025.08.031
Authors: Annette Maznyczka, Rutger-Jan Nuis, Isaac Shiri, Julien Ternacle, Philippe Garot, Mark M.P. van den Dorpel, Arif A. Khokhar, Raffaele De Lucia, Michele Orini, Shelby Kutty, Julia Grapsa, Christoph Gräni, Ambarish Pandey, Taylor Becker, Kevin O’Gallagher, Peter Mortier, Lakshmi Prasad Dasi, Klaus Fuglsang Kofoed, Sandy Engelhardt, Patric Biaggi, Faraz S. Ahmad, Dee Dee Wang, Lionel Leroux, Thomas Modine, Stephan Windecker, Rebecca T. Hahn, Nicolas M. Van Mieghem, and Ole De Backer
Summary: This review examines how artificial intelligence can transform valvular heart disease management by integrating multimodal data for enhanced diagnosis, procedural optimization, and personalized treatment strategies, while addressing critical challenges including validation requirements, algorithmic bias, and transparency concerns that must be resolved for successful clinical implementation.